Hans Bock*) und Hartmuth Alt**)

d-Orbitaleffekte in silicium-substituierten π -Elektronensystemen, XXV¹⁾

Eigenschaftsunterschiede R₃Si-, R₃C- und R₃SiCH₂-substituierter Phenylacetylene

Aus dem Institut für Anorganische Chemie der Universität Frankfurt*)

(Eingegangen am 14. Januar 1970)

Silyl- und Alkyl-phenylacetylene $C_6H_5 - C = C - X$ (X = Si(CH₃)₃, CH₃, C(CH₃)₃, CH₂Si(CH₃)₃) wurden synthetisiert und CT-Absorptionen ihrer TCNE-Komplexe, Ionisierungsenergien, C = C-Valenzschwingungsfrequenzen, Halbstufen-Reduktionspotentiale sowie Elektronenspektren bestimmt. Ein Vergleich der Meßdaten stützt die Annahme eines konjugativen Si \leftarrow C_{π}-Bindungsanteils in Trimethylsilyl-phenylacetylen.

d-Orbital Effects in Silicon-Substituted π -Electron Systems, XXV¹⁾

The Different Properties of R₃Si-, R₃C- and R₃SiCH₂-Substituted Phenylacetylenes

Silyl and alkyl phenylacetylenes $C_6H_5-C=C-X$ (X = Si(CH₃)₃, CH₃, C(CH₃)₃, CH₂Si(CH₃)₃) have been synthesized and CT-absorptions of their TCNE-complexes, ionization energies, $C \equiv C$ vibrational frequencies, halfwave reduction potentials and electronic spectra were determined. Comparison of the experimental data supports the assumption of Si \leftarrow C_{π}-bonding in trimethylsilyl phenylacetylene.

Im Gegensatz zu anderen linearen ^{2,3)} und zu cyclischen^{3,4)} π -Elektronensystemen ist bei monosubstituierten Acetylen-Derivaten H-C=C-X die massenspektroskopisch bestimmte Ionisierungsenergie der Trimethylsilyl-Verbindung (X = Si(CH₃)₃) geringer als diejenige des tert.-Butyl-Derivates (X = C(CH₃)₃)⁵⁾. Dieser Befund wurde aufgrund der geringen Ionisierungsenergie von Tetramethylsilan⁶⁾ (*IE* = 9.98 eV) unter der Annahme interpretiert, daß in Trimethylsilyl-acetylen die Anregung aus einem σ -Molekülorbital erfolgt^{3,5)}. Ionisierungsenergien liefern daher keine Aussagen über einen Si \leftarrow C_{π}-Bindungsanteil im Grundzustand von Trimethylsilyl-acetylen. Substituenteneffekte bei Besetzung antibindender Molekülorbitale lassen sich ebenfalls nicht ohne weiteres ermitteln, da die polarographischen Halbstufen-Reduktionspotentiale außerhalb des Meßbereiches liegen.

Bei Kopplung des Acetylen- mit dem Benzol-π-System entfallen diese Beschränkungen: Charge-Transfer-Absorptionen der Tetracyanäthylen-Komplexe von Phenyl-

^{*)} Neue Anschrift: 6 Frankfurt/Main, Robert Mayer-Str. 7-9.

^{**)} Neue Anschrift: Battelle-Institut, 6 Frankfurt/Main, Wiesbadener Str.

¹⁾ XXIV. Mitteil.: H. Bock und H. Alt, J. Amer. chem. Soc. 92, 1569 (1970).

²⁾ H. Bock und H. Seidl, J. organomet. Chem. 13, 87 (1968); J. Amer. chem. Soc. 90, 5694 (1968).

³⁾ H. Bock, H. Seidl und M. Fochler, Chem. Ber. 101, 2815 (1968).

⁴⁾ H. Bock und H. Alt, J. Amer. chem. Soc. **92**, 1569 (1970), sowie Angew. Chem. **79**, 934 (1967); Angew. Chem. internat. Edit. **6**, 943 (1967).

⁵⁾ H. Bock und H. Seidl, J. chem. Soc. [London] B 1968, 1158.

⁶⁾ G. C. Hess, F. W. Lampe und L. H. Sommer, J. Amer. chem. Soc. 87, 5327 (1965).

acetylenen $C_6H_5-C \equiv C-X$ geben über die Störung des Benzol- π -Systems durch die $C \equiv C-X$ -Gruppe und damit über den elektronischen Effekt des Silyl- oder Alkyl-Substituenten X Auskunft. σ -Zustände müssen im Gegensatz zu Acetylen-Derivaten wegen der größeren Energie der obersten besetzten Phenylacetylen-Orbitale und des π -Charakters der Charge-Transfer-Anregung nicht berücksichtigt werden. Die Absenkung des symmetrischen e_{2u} -Benzol-Molekülorbitals durch die konjugative Wechselwirkung mit dem Acetylen- π -System ermöglicht die Bestimmung von Halbstufen-Reduktionspotentialen. Durch IR- und UV-Daten ergänzt, liefern diese Messungen weitere Auskünfte über konjugative Si $\leftarrow C_{\pi}$ -Wechselwirkungen.

A. Charge-Transfer-Spektren der TCNE-Komplexe

Das 8-Zentren- π -Elektronensystem von Phenylacetylen entspricht im HMO-Modell dem von Styrol, da die π -Niveaus der C=C-Bindung mit Knotenebenen senkrecht zur Molekülebene nicht mit dem Benzol- π -System in Wechselwirkung treten können. Als wesentlicher Unterschied zwischen Styrol und Phenylacetylen ist jedoch die stärkere Bindungsalternanz des Acetylen-Derivates zu berücksichtigen (C=C-Bindungslänge 1.20 Å⁷). Bei einer Ableitung der HMO-Eigenwerte von Phenylacetylen aus den entsprechenden Werten von Styrol muß daher vor allem das Resonanzintegral zwischen den exocyclischen C-Atomen erhöht werden. Nach der *Wheland*-Näherung⁸ k_{ij} = S_{ij}/S resultiert für einen Abstand von 1.20 Å mit $\beta_{ij} = k_{ij} \beta_0$ ein Resonanzintegral $\beta_{C=C} = 1.353 \beta_0^{9}$. Die mit diesem Wert durch Störungsrechnung 1. Ordnung aus den HMO-Daten für das Styrol- π -System berechneten Eigenwerte der inneren π -Molekülorbitale von Phenylacetylen sind in Abbild. 1 angegeben.

Einer Interpretation der CT-Bandenmaxima des TCNE-Komplexes von Phenylacetylen können die relativen Energien der obersten besetzten Molekülorbitale zugrundegelegt werden. Nach Abbild. 1 nimmt die Störung des symmetrischen e_{1g} -Benzolorbitals von Styrol zu Phenylacetylen ab, in Übereinstimmung mit der durch Bindungslängen- und UV-Daten von Polyinen belegten geringeren "Konjugationsfähigkeit" der C = C-Dreifachbindung¹⁰). Das ungestörte Molekülorbital Ψ_3 entspricht wegen seiner Knotenebene durch das Substitutionszentrum dem antisymmetrischen e_{1g} -Benzol-Molekülorbital.

In Abbild. 1 sind die nach dem Einelektronen-Modell der CT-Absorption zu erwartenden CT-Banden I und II der TCNE-Komplexe eingetragen. Die längerwellige CT-Absorption $\Psi_4 \rightarrow \Psi_{\text{TCNE}}$ wird im Elektronenspektrum des Styrol/TCNE-Komplexes bei 20950/cm beobachtet. Der Phenylacetylen/TCNE-Komplex absorbiert in Übereinstimmung mit dem MO-Schema (Abbild. 1) wegen der Absenkung von Ψ_4 kürzerwellig ($\tilde{v}_m^{\text{CTI}} = 23800/\text{cm}$). Bei 26300/cm ist zusätzlich eine Schulter sichtbar, die wegen der Übereinstimmung mit der CT-Bande des Benzol/TCNE-Komplexes ($\tilde{v}_m^{\text{CT}} = 26050/\text{cm}$)¹⁾ dem CT-Übergang $\Psi_3 \rightarrow \Psi_{\text{TCNE}}$ zugeordnet wird.

⁷⁾ Tables of Interatomic Distances and Configurations in Molecules and Ions, Herausgeber L. E. Sutton, The Chemical Society 1965.

⁸⁾ G. W. Wheland, J. Amer. chem. Soc. 64, 900 (1942).

⁹⁾ R. S. Mulliken, C. A. Rieke, D. Orloff und H. Orloff, J. chem. Physics 17, 1248 (1949).

¹⁰⁾ Vgl. H. A. Staab, Einführung in die theoretische organische Chemie, Verlag Chemie, Weinheim 1964, und die darin gegebenen Literaturzitate.

Abbild. 1. HMO-Eigenwerte der inneren Molekülorbitale von Phenylacetylen, abgeleitet durch Störung des Styrol-π-Systems (die Acetylen-π-Niveaus mit Knotenebenen senkrecht zur Molekülebene sind nicht eingezeichnet)

Die Absorptionsmaxima \tilde{v}_m^{CT} der TCNE-Komplexe von Silyl- und Alkyl-phenylacetylenen C₆H₅- C = C X sind in (1) zusammengefaßt. Repräsentative Beispiele für die CT-Spektren zeigt Abbild. 2.

X	Н	Si(CH ₃) ₃	CH ₃	$C(CH_3)_3$	CH ₂ Si(CH ₃) ₃
$\tilde{\nu}_m^{\text{CT I}}$ [cm ⁻¹]	23800	21650	20950	20500	19500
$\tilde{v}_{m}^{CT II}$ [cm ⁻¹]	(26300)	26450	26150	26250	26300

Die CT-Anregungsenergien II sind wegen der Knotenebene von Ψ_3 durch die C=C-Bindungsachse erwartungsgemäß konstant und beweisen zugleich, daß die Voraussetzungen für eine Korrelation der CT-Anregungsenergien mit den Energien der obersten besetzten Donator-Molekülorbitale – insbesondere konstanter Gleichgewichtsabstand Donator/Akzeptor sowie konstante Differenz der Komplex-Bindungsenergien im Grundzustand und im angeregten CT-Zustand (vgl. l. c.¹) — bei den Phenylacetylen-Derivaten gut erfüllt sind.

Die CT-Anregungsenergie 1 wird demgegenüber bis zu 4300/cm erniedrigt. Diese starke Abhängigkeit der längerwelligen CT-Bande findet sich auch bei β -substituierten Styrolen C₆H₅-CH-CH-X¹¹⁾ und ist bei beiden Verbindungsklassen aufgrund des großen HMO-Koeffizienten im obersten besetzten Molekülorbital Ψ_4 am Substitutionszentrum μ_x ($c_{4,\mu x}^{\text{HMO}}$ (Styrol) = 0.595) verständlich. Alkylgruppen erniedrigen die CT-Anregungsenergie I in der Reihenfolge CH₃ < C(CH₃)₃ < CH₂Si(CH₃)₃; diese Reihenfolge zunehmender Elektronendonatorstärke läßt sich z.B. auch aus Ionisierungsenergien³⁾ oder CT-Daten⁴⁾ anderer alkylsubstituierter cyclischer

¹¹⁾ H. Seidl, I. Benito und H. Bock, unveröffentlichte Ergebnisse.

Abbild. 2. CT-Spektren der TCNE-Komplexe repräsentativer Phenylacetylen-Derivate (die Extinktionen sind, da keine Gleichgewichtskonstanten bestimmt wurden, willkürlich angenommen)

π-Elektronensysteme ableiten. Der ungewöhnlich starke positiv-induktive Einfluß eines Trimethylsilyl-Restes folgt aus der CT-Anregungsenergie I des R₃SiCH₂-Derivates, in welchem das Silicium durch eine Methylengruppe vom π-System getrennt ist, und wird durch zahlreiche kinetische Daten¹²), pK-Werte¹³), Ionisierungsenergien³) und CT-Anregungsenergien⁴) anderer R₃SiCH₂-substituierter Verbindungen bestätigt. Demgegenüber ist die CT-Anregungsenergie I des R₃Si-Derivates trotz der geringeren Entfernung des Siliciums vom π-System, die eine Verstärkung des induktiven Effekts erwarten läßt¹⁴), größer als diejenige des Methyl- oder des tert.-Butyl-Derivates. Somit wird zumindest das mit dem Benzol-π-System konjugationsfähige π-Orbital der C≡C-Dreifachbindung durch eine Si ← C_π-Rückbindung in unbesetzte Silicium-Atomorbitale entgegen dem induktiven Effekt abgesenkt. Der kurzwelligen CT-Absorption I entspricht die hohe Ionisierungsenergie von Trimethylsilyl-phenylacetylen. Der massenspektroskopisch bestimmte Wert von 8.16 eV fügt sich der an Benzol-Derivaten abgeleiteten linearen Beziehung⁴)

$$\tilde{v}_{\rm m}^{\rm CT} \, [{\rm cm}^{-1}] = -2.149 \cdot 10^4 + 5.264 \cdot 10^3 \, IE \, [{\rm eV}]$$
 (2)

zwischen den längstwelligen CT-Bandenmaxima \tilde{v}_m^{CT} und den Ionisierungsenergien *IE* gut ein. Das tert.-Butyl-Derivat ist erwartungsgemäß leichter ionisierbar (*IE* = 8.05 eV).

Diese Messungen stützen zugleich die Annahme^{3,5)}, daß die unerwartet geringe Ionisierungsenergie von TrimethylsilyI-acetylen $H-C = C-Si(CH_3)_3$ auf einer σ -Anregung beruht, da bei Phenylacetylenen die Reihenfolge Si(CH₃)₃ < C(CH₃)₃ zunehmender Elektronendonatorstärke gefunden wird.

¹²⁾ R. W. Bott, C. Eaborn, K. C. Pande und T. W. Swaddle, J. chem. Soc. [London] 1962, 1217; D. R. M. Walton, J. organomet. Chem. 3, 438 (1965).

¹³⁾ Vgl. C. Eaborn, Organosilicon Compounds, Butterworths 1960.

¹⁴⁾ O. Exner und J. Jonas, Collect. czechoslov. chem. Commun. 27, 2296 (1962).

B. C≡C-Valenzschwingungsfrequenzen

Die aus den CT-Spektren abzuleitende konjugative Elektronen-Rückgabe Si $\leftarrow C_{\pi}$ sollte sich auch in den C = C-Valenzschwingungsfrequenzen der Phenylacetylen-Derivate zu erkennen geben: die unterschiedlichen Kraftkonstanten und Schwingungsfrequenzen der C = C-Bindung von Silyl- und Alkyl-acetylenen und -polyacetylenen^{5,15)} sowie die von *Eaborn, Skinner* und *Walton*¹⁶⁾ bestimmten relativen Stabilitäten von Acetylen-Anionen lassen sich mit einem solchen π -Elektronenabzug in den Silyl-Derivaten erklären. Die Schwingungsfrequenzen $\tilde{v}_{C=C}$ der Phenylacetylene betragen:

X =	н	Si(CH ₃) ₃	C(CH ₃) ₃	CH_3	CH ₂ Si(CH ₃) ₃	
$\tilde{v}_{C\equiv C}$ [cm ⁻¹]	2110	2213	2225	2212	2207	(3)

Der Unterschied zwischen Phenylacetylen und den substituierten Derivaten erklärt sich durch den Masseneffekt des starr mitschwingenden Wasserstoffatoms. Bei den schweren Substituenten X sollten Masseneffekte jedoch zu vernachlässigen sein. Die Silyl-Verbindung zeigt erwartungsgemäß^{5,15)} einen kleineren $\tilde{v}_{C=C}$ -Wert als das tert.-Butyl-Derivat; bei monosubstituierten Alkyl- und Silyl-acetylenen^{5,15)} beträgt die Differenz sogar 95/cm. Bei den Derivaten mit CH₂-Gruppen in Nachbarschaft zur C=C-Bindung wird eine Aufspaltung der Schwingungsabsorption beobachtet, vermutlich infolge Resonanz mit einem Kombinationston. Bei Annahme nahezu gleicher Energien der wechselwirkenden Schwingungszustände resultiert eine gemittelte C=C-Frequenz der CH₂Si(CH₃)₃-Verbindung $\tilde{v}_{C=C} = 2225/cm$, die wie bei den nicht phenylierten Acetylen-Derivaten⁵⁾ mit dem Wert für die tert.-Butyl-Verbindung übereinstimmt.

C. Halbstufen-Reduktionspotentiale

Benzol, Acetylen und deren Alkylderivate lassen sich wegen ihrer außerhalb des Meßbereichs ($E_{V_2}^{\text{Red}} < -2.5$ V gegen Hg) liegenden Potentiale polarographisch nicht vermessen. Die Kopplung der beiden π -Systeme führt jedoch zum tieferliegenden unbesetzten Molekülorbital Ψ_5 (Abbild. 1). Entsprechend der Beziehung (4) zwischen den Eigenwertkoeffizienten x_{ab} der untersten unbesetzten Molekülorbitale Ψ_{ab} und dem Halbstufen-Reduktionspotential $E_{V_2}^{\text{Red}}$ (7)

$$\Xi^{\text{Red}}_{1/3} = a + b x_{ab} \tag{4}$$

sind die Halbstufen-Reduktionspotentiale von Silyl- und Alkyl-phenylacetylenen daher meßbar. In 0.1 molaren Lösungen von Tetra-n-butylammoniumjodid in Dimethylformamid wurden bei 25° C folgende Potentiale gegenüber der Quecksilber-Referenzelektrode erhalten:

X =

$$(H_3C)_3Si$$
 H_3C
 $(H_3C)_3C$
 $(H_3C)_3SiCH_2$
 $E_{V_2}^{\text{Red}}[V]$
 -2.02
 -2.18
 -2.21
 (5)

Die Meßdaten lassen sich wie die CT-Anregungsenergien mit unterschiedlichen induktiven Effekten $+1_{R_3S_i} > +1_{R_3C}$ sowie einer zusätzlichen Si \leftarrow C_{π}-Wechsel-

¹⁵⁾ R. West und C. S. Kraihanzel, Inorg. nucl. Chem. Letters 1, 967 (1962).

¹⁶⁾ C. Eaborn, B. A. Skinner und D. R. M. Walton, J. organomet. Chem. 6, 438 (1966).

¹⁷⁾ A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley 1962.

wirkung im Trimethylsilyl-Derivat verstehen. Trimethylsilylmethyl-phenylacetylen weist wegen der in erster Näherung rein induktiven Wirkung des Siliciums das negativste Reduktionspotential auf. Die erhöhte Elektronenaffinität der Silyl-Verbindung weist demgegenüber auf eine Absenkung des Molekülorbitals Ψ_5 durch die konjugative Wechselwirkung mit der R₃Si-Gruppe hin. Ein Vergleich mit dem Halbstufen-Reduktionspotential des unsubstituierten Kohlenwasserstoffs (X = H) ist nicht möglich, da Phenylacetylen im Gegensatz zu seinen Silyl- und Alkyl-Derivaten irreversibel reduziert wird. Bei den entsprechenden Styrol-Derivaten ist jedoch die Silyl-Verbindung leichter reduzierbar als Styrol selbst¹¹; daher ist anzunehmen, daß auch das Radikalanion von Phenylacetylen durch die Si $\leftarrow C_{\pi}$ -Delokalisierung stabilisiert wird.

D. Elektronenspektren

Das Elektronenspektrum von Phenylacetylen entspricht in seinem Aufbau weitgehend dem des Styrols: die langwellige Absorption 1 ($\tilde{\nu}_m^{I} = 38500 - 35700/cm$) kann der langwellig verschobenen ${}^{1}L_{b}$ -Bande des Benzols zugeordnet werden; die intensive, feinstrukturierte Absorption II ($\tilde{\nu}_m^{II} = 42500/cm$) entspricht in der HMO-Näherung dem Elektronenübergang $\Psi_4 \rightarrow \Psi_5$ (Abbild. 1)¹⁸). Die Absorptionsmaxima von Phenylacetylen sind gegenüber denen von Styrol kurzwellig verschoben, ein Befund, der auf das höhere Resonanzintegral $\beta_{C\equiv C}$ sowie die geringere π -Elektronen-Delokalisierung im Acetylen-Derivat zurückgeführt wird¹⁸) (vgl. auch Abbild. 1). Die Elektronenspektren sind in Abbild. 3 wiedergegeben; Tab. 1 enthält die Zahlenwerte der Absorptionsmaxima von Silyl- und Alkyl-phenylacetylenen.

Die "¹L_b"-Banden der Phenylacetylene sind nahezu lagekonstant; die erhöhten Extinktionen der Silyl- und Alkyl-Derivate sind vornehmlich auf die stärkere Überlagerung der Absorption I mit der durch alle Substituenten langwellig verschobenen Absorption II zurückzuführen. Diese muß wegen ihres $\Psi_4 \rightarrow \Psi_5$ -Anteils die aus den CT-Anregungsenergien (Abschnitt A.) und Halbstufen-Reduktionspotentialen (Abschnitt C.) abgeleiteten elektronischen Effekte von Silyl- und Silylmethyl-Gruppen widerspiegeln: die niedrigste Anregungsenergie II der Alkylderivate zeigt die R₃SiCH₂-Verbindung (Tab. 1). Der langwelligen CT-Bande I ihres TCNE-Komplexes (1) ist zu entnehmen, daß das Molekülorbital Ψ_4 von Phenylacetylen in diesem Derivat am stärksten angehoben ist. Demgegenüber ist das Halbstufen-Reduktionspotential nur um 0.03 V gegenüber den anderen Alkylderivaten negativ verschoben (5). Die langwellige Absorption II des UV-Spektrums ist deshalb im Einelektronen-Modell einer besonders starken Anhebung von Ψ_4 durch den $+I_{Si}$ -Effekt zuzuschreiben.

Die nahezu gleich starke langwellige Verschiebung der Absorption II von Phenylacetylen durch den Trimethylsilyl-Substituenten ist dagegen nicht durch den Elektronendonator-Effekt der Silylgruppe erklärbar: die relativ kurzwellige CT-Bande I des TCNE-Komplexes weist auf eine nur geringe Anhebung des Molekülorbitals Ψ_4 von Phenylacetylen durch den R₃Si-Rest hin. Die langwellige UV-Absorption II ist hier unter der Annahme verständlich, daß der angeregte Zustand relativ zum Grundzustand durch eine verstärkte Si $\leftarrow C_{\pi}$ -Rückbindung stabilisiert wird. Das positivere

¹⁸⁾ H. Suzuki, Electronic Spectra and Geometry of Organic Molecules, S. 300, Academic Press 1967.

Absorption II
ν̃ _m /ε _m
40800/16000 41650/13100 42550/17600 (43500/13200 sh) 44450/10050
40150/19950 41150/14750 42100/18350
39850/22550 40800/16900 41850/21550
38750/24700 39650/15400 40600/25800 42350/14800
(38450/10700 sh) 40250/19200 41750/16200
200

Tab. 1. Absorptionsmaxima \tilde{v}_m [cm⁻¹] und molare Extinktionen ϵ_m [l/Mol·cm] der Phenylacetylen-Derivate $C_6H_5-C \equiv C-X$ in n-Hexan

Abbild. 3. Elektronenspektren von Phenylacetylen, Trimethylsilyl- und Trimethylsilylmethylphenylacetylen in n-Hexan

Halbstufen-Reduktionspotential von Trimethylsilyl-phenylacetylen stützt diese Interpretation. Die erhöhte molare Extinktion der Absorption II ist analog zu interpretieren: eine "localized orbital"-Betrachtung¹⁹⁾ zeigt, daß die Anregung II wie im Falle des Styrols mit einem intramolekularen Charge Transfer vom symmetrischen e_{1g}-Benzolorbital in das tiefste unbesetzte Molekülorbital der Acetylengruppe verbunden ist. Eine Silylgruppe erniedrigt – wie das Reduktionspotential belegt – die Energie des Akzeptororbitals, wodurch der Anteil der CT-Konfiguration am angeregten Zustand und damit auch die Intensität des Elektronenübergangs II zunimmt. Damit stützen auch die Elektronenspektren die Annahme eines Si $\leftarrow C_{\pi}$ -Bindungsanteils im Trimethylsilyl-phenylacetylen.

Die Untersuchungen wurden von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gefördert.

Beschreibung der Versuche

Die Phenylacetylen-Derivate wurden durch Umsetzung der Phenylacetylen-Grignard-Verbindung mit den Halogeniden X - Hal erhalten²⁰:

$$C_{6}H_{5}-C = CH \xrightarrow{CH_{3}MgCI} C_{6}H_{5}-C = CMgC1 \xrightarrow{X-Hal} C_{6}H_{5}-C = C-X$$
(6)

Allgemeine Arbeitsvorschrift: Zu einer Lösung von Methylmagnesiumchlorid in absol. THF wird unter Stickstoff bei 20° langsam die stöchiometrische Menge Phenylacetylen getropft. Nach Abklingen der spontanen Methan-Entwicklung wird 1 Stde. zum Rückfluß erhitzt und anschließend bei 20° das Halogenid X—Hal zugetropft. Nach 2tägigem Kochen unter Rückfluß wird mit verd. Salzsäure vorsichtig hydrolysiert, ausgeäthert und nach Trocknen und Abziehen der Lösungsmittel fraktioniert. Siedepunkte und analytische Daten sind Tab. 2 zu entnehmen.

Х	Sdp./Torr	Summenformel (MolGew.)	Analyse C H
Si(CH ₃) ₃	69°/7	$C_{11}H_{14}Si$	Ber. 75.80 8.09
CH ₃	72°/12	(174.3) C ₉ H ₈ (116.2)	Ber. 93.06 6.94 Gef. 92.86 7.18
C(CH ₃) ₃	84°/15	$C_{12}H_{14}$	Ber. 91.08 8.92
CH ₂ Si(CH ₃) ₃	128°/16	$C_{12}H_{16}Si$ (188.3)	Ber. 76.52 8.56 Gef. 76.90 8.62

Tab. 2. Analytische Daten der Phenylacetylen-Derivate $C_6H_5 - C = C - X$

Die Elektronenspektren wurden mit einem Cary N 14 Spektrometer in Fisher n-Hexan und Methylenchlorid aufgenommen, Halbstufen-Reduktionspotentiale mit einem Metrohm Polarecord E 261 R in spektralreinem Dimethylformamid bei 25° C gegen Quecksilber als Referenzelektrode bestimmt. IR-Spektren der kapillaren Filme registrierte ein Perkin-Elmer 21 Spektrograph mit NaCl-Prisma.

¹⁹⁾ VgJ. S. Nagakura und K. Kimura, J. chem. Soc. Japan, pure Chem. Sect. [Nippon Kagaku Zasshi] 86, 1 (1965).

²⁰⁾ R. A. Benkeser und R. A. Hickner, J. Amcr. chem. Soc. **80**, 5298 (1958). [11/70]